Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity

نویسندگان

  • Alayna M. George Thompson
  • Cristina V. Iancu
  • Thi Thanh Hanh Nguyen
  • Doman Kim
  • Jun-yong Choe
چکیده

Glucose transporters GLUT1 (transports glucose) and GLUT5 (transports fructose), in addition to their functions in normal metabolism, have been implicated in several diseases including cancer and diabetes. While GLUT1 has several inhibitors, none have been described for GLUT5. By transport activity assays we found two plant products, rubusoside (from Rubus suavissimus) and astragalin-6-glucoside (a glycosylated derivative of astragalin, from Phytolacca americana) that inhibited human GLUT5. These plants are utilized in traditional medicine: R. suavissimus for weight loss and P. americana for cancer treatment, but the molecular interactions of these products are unknown. Rubusoside also inhibited human GLUT1, but astragalin-6-glucoside did not. In silico analysis of rubusoside:protein interactions pinpointed a major difference in substrate cavity between these transporters, a residue that is a tryptophan in GLUT1 but an alanine in GLUT5. Investigation of mutant proteins supported the importance of this position in ligand specificity. GLUT1W388A became susceptible to inhibition by astragalin-6-glucoside and resistant to rubusoside. GLUT5A396W transported fructose and also glucose, and maintained inhibition by rubusoside and astragalin-6-glucoside. Astragalin-6-glucoside can serve as a starting point in the design of specific inhibitors for GLUT5. The application of these studies to understanding glucose transporters and their interaction with substrates and ligands is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation

GLUT5, a fructose-transporting member of the facilitative glucose transporter (GLUT, SLC2) family, is a therapeutic target for diabetes and cancer but has no potent inhibitors. We virtually screened a library of 6 million chemicals onto a GLUT5 model and identified N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) as an inhibitor of GLUT5 fructose transport in proteoliposomes...

متن کامل

Human erythrocytes express GLUT5 and transport fructose.

Although erythrocytes readily metabolize fructose, it has not been known how this sugar gains entry to the red blood cell. We present evidence indicating that human erythrocytes express the fructose transporter GLUT5, which is the major means for transporting fructose into the cell. Immunoblotting and immunolocalization experiments identified the presence of GLUT1 and GLUT5 as the main facilita...

متن کامل

Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins.

The number of known glucose transporters has expanded considerably over the past 2 years. At least three, and up to six, Na+-dependent glucose transporters (SGLT1-SGLT6; gene name SLC5A) have been identified. Similarly, thirteen members of the family of facilitative sugar transporters (GLUT1-GLUT12 and HMIT; gene name SLC2A) are now recognised. These various transporters exhibit different subst...

متن کامل

Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues

Here we have investigated the inhibitory properties of green tea catechins on the Plasmodium falciparum hexose transporter (PfHT), the Babesia bovis hexose transporter 1 (BboHT1) and the mammalian facilitative glucose transporters, GLUT1 and GLUT5, expressed in Xenopus laevis oocytes. (-)-Epicatechin-gallate (ECG) and (-)-epigallocatechin-gallate (EGCG) inhibited D-glucose transport by GLUT1 an...

متن کامل

Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015